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1 QUANTITATIVE EVALUATION ON TEXT IMAGE DATASET

In this section, we have created a dataset containing 15 images and 8 blur kernels extracted from Levin et
al. [1]. Similar to [1], we can generate 120 different blurred images. The 15 ground truth images and 8 blur
kernels are shown in Figures 1 and 2, respectively. For simplicity. we still use LORIG and ILORIG to denote
the original text deblurring method [2] and the modified method for natural image deblurring.
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Fig. 1. Ground truth text images.
For each image, we quantitatively compare average PSNRs among different methods [3], [4], [5], [6], [7],

[8], [9] in Figure 3. The average PSNR values of all images are show in Table 1.
Figures 8 and 9 show some results from the test dataset.
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Fig. 2. Ground truth kernels.
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Fig. 3. Quantitative comparison on the dataset. The z-axis denotes the image index and the average PSNR
values of all the images are shown on the rightmost column.

TABLE 1
The overall average PSNR values on text image dataset

[ [ Blurred images | [4] ] B ] [6I ] 71 ] 81 ] O ] LORIG | ILORIG |
[ Average PSNR | 17.35 [ 2380 | 2621 | 2086 | 2490 | 2621 | 1905 [ 2879 | _ 2879 |
TABLE 2
The overall average PSNR values on low-illumination image dataset
[ [ Blurred images | [4] ] BBI ] [6I ] 81 ] 117 ] LORIG | ILORIG |
[ Average PSNR | 22.07 [ 265 | 273 | 243 | 231 | 277 | 2415 | 2416 |

Since the code of Cho et al. [10] is not available, and the algorithm needs to adjust parameters to get the
desirable results, we do not compare with [10] in this dataset. To make follow-up work easier, the MATLAB
source code and above dataset will be made available to the public.

2 QUANTITATIVE EVALUATION ON LOW-ILLUMINATION IMAGE DATASET

In this section, we have created a dataset containing 6 low-illumination images and 8 blur kernels extracted
from Levin et al. [1] (See Figure 2). Similar to [11], [12], we stretch the pixel intensities of each image into [0,
2.2] and then apply 8 different blur kernels. Finally we clip the pixel intensities into dynamic range [0, 1]. The
6 ground truth images are shown in Figure 6.

Figure 7 shows the average PSNR values of each image and Table 2 shows the overall PSNR values of this
dataset.

3 QUANTITATIVE EVALUATION ON NATURAL IMAGE DEBLURRING DATASETS [1] AND [13]

To verify the validity of the proposed method on the natural images, we test our method on the dataset [1],
which contains 4 ground truth images and 8 blur kernels. Figure 10 (a) shows the cumulative histogram of
the deconvolution error ratio across test examples. The proposed method achieves 100% of the results under
error ratio 2.2 (See Table 3). Figure 11 shows one visual comparison from dataset [1]. Figures 12-15 show some
visual comparisons from dataset [13].
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Fig. 4. Visualization comparisons on the text image dataset.
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Fig. 5. Visualization comparisons on the text image dataset.
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Fig. 6. Ground truth low-illumination images.
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Fig. 7. Quantitative comparison on the low-illumination image dataset. The z-axis denotes the image index and
the average PSNR values of all the images are shown on the rightmost column.

TABLE 3
The error ratio values of each restored image generated by ILORIG on dataset [1]

[ [ kernel 1 | kernel 2 | kernel 3 | kernel 4 | kernel 5 | kernel 6 | kernel 7 | kernel 8 |
image 1 1.17 1.19 1.26 1.80 1.34 1.44 1.60 1.73
image 2 1.22 1.33 1.45 1.15 1.45 1.72 1.11 1.53
image 3 1.04 1.14 1.21 1.25 1.07 1.40 1.25 1.21
image 4 1.42 1.28 1.99 2.05 1.83 2.12 2.07 2.04

TABLE 4

The overall average PSNR values on natural image deblurring dataset [13]

[ [ blurred image [ [14] | BI | [ [ ] [ 16 | 1151 | 6] | TORIG | TLORIG |
[ Average PSNR | 2493 | 273 | 2589 | 2898 | 2954 | 2573 | 2684 | 2807 | 2840 | 2965 |
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Fig. 8. Visualization comparisons on the low-illumination image dataset.
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Fig. 9. Visualization comparisons on the low-illumination image dataset.
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Fig. 10. Quantitative comparison on the natural image datasets [1] and [13]. The numbers below the horizontal
axis in (a) denote the error ratio values. Our method achieves 100% of the results under error ratio 2.2 on the
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Visualization comparisons on the natural image dataset [1].



(a) Blurred image (b) Shan et al. [3] (c) Cho and Lee [4]
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Fig. 12. Visualization comparisons on the natural image dataset [1].
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Fig. 13. Visualization comparisons on the natural image dataset [1].
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Fig. 14. Visualization comparisons on the natural image dataset [1].
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Fig. 15. Visualization comparisons on the natural image dataset [1].
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4 MORE EXPERIMENTAL RESULTS

In this section, we show more comparison of results which do not appear in the manuscript. We compare
our method with several state-of-the-art deblurring methods. It is noted that the codes or softwares of some
state-of-the-art deblurring methods (e.g., Levin et al. [7], Shan et al. [3]) do not generate the results due to the
challenging blurred examples, so we do not compare these methods in some following figures.

4.1 Synthetic Blurred Text Images
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Fig. 16. Synthetic example with large blur.
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Fig. 17. A synthetic example from [10].
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Fig. 17. (continued) A synthetic example from [10].
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4.2 Real Blurred Text Images

(a) Blurred image (b) Shan et al. [3] (c) Cho and Lee [4]

(d) Xu and Jia [5] (e) Krishnan et al. [6] (f) Levin et al. [7]

(g) Xu et al. [8] ) hong et al. [9] (i) Chen et al. [17]

(j) Cho et al. [10] (k) LORIG (1) ILORIG
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Fig. 18. Real captured example. Our method generates the better deblurred result with less ringing artifacts

compared to [10].
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4.3 Natural Blurred Images with Severe Saturated Areas

In this section, we use some real captured blurred images with severe saturated areas to verify the validity
of the proposed kernel estimation method.

4.4 Natural Image Deblurring

We compare our method with the state-of-the-art natural image deblurring methods [14], [4], [5], [8] by using
the images that are presented in their manuscripts.

4.5 Non-Uniform Image Deblurring

In this section, we show comparison results of the non-uniform deblurring methods.
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Fig. 19. Real captured example. Our method generates the better deblurred result with less ringing artifacts
compared to [10].




(a) Blurred image

(d) Krishnan et al. [6]

(g) Cho et al. [10]

Fig. 20. Real captured example. Our method generates the better deblurred result with less ringing artifacts

compared to [10].
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(f) Xu et al. [8]

(g) Zhong et al. [9] (h) LORIG (i) ILORIG

Fig. 21. Real captured example containing lots of saturated areas. The kernel estimates of [4], [5], [6], [7], [8],
[9] look like delta kernels. Our method generates a better kernel estimate.
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(a) Blurred image (c) Cho and Lee [4]

i

(d) Xu and Jia [5]

(g) Xu et al. [8] (h) LORIG (i) ILORIG

Fig. 22. Real captured example containing lots of saturated areas. The kernel estimates of [3], [4], [5], [6], [7],
[8], [9] look like delta kernels. Our method generates a better kernel estimate. This image is obtained from [18].
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(c) Xu anci Jia [5]

(g) Hu et al. [11] (h) LORIG ) ILORIG
Fig. 23. An example containing lots of saturated areas. Our method generates comparable results compared

to [11] which mainly focuses on blurred images with low-light streaks.



(a) Blurred image

(a) Blurred image

(a) Blurred image (b) Xu et al. [8] (c) ILORIG

Fig. 24. Natural image deblurring examples. Our method generates comparable or even better results compared
to the state-of-the-art natural image deblurring methods.
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(a) Blurred image ] (b) Cho and Lee [4]

(e) Xu et al. [8] () ILORIG

Fig. 25. Comparison of non-uniform deblurred results. Our method generates a results with clearer characters
(the enclosed part in green box in (f)). (best viewed on high-resolution display)



(e) Xu et al. [8] (f) ILORIG

Fig. 26. Comparison of non-uniform deblurred results. Our method generates a results with clearer characters
(the enclosed part in red box in (f)). (best viewed on high-resolution display)




(a) Blurred image (b) Xu and Jia [5]

(c) Whyte et al. [16] (d) Hirsch et al. [15]

(e) Xu et al. [8] (f) ILORIG

Fig. 27. Comparison of non-uniform deblurred results. The results shown in (b)-(c) contain some ringing artifacts
and the result in () contains some blur (best viewed on high-resolution display).
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(a) Blurred image (b) Xu et al. [8] ILORIG

(d) Blurred image (e) Whyte et al. [16] (f) ILORIG

Fig. 28. Comparison of non-uniform deblurred results. Our method generates a results with few ringing artifacts
(best viewed on high-resolution display).



